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Abstract—Anycast content delivery networks rely on the un-
derlying routing to schedule clients to their nearby service nodes,
which however is not natively aware of server load or path la-
tency. Requests burst from some regions may cause overload and
hurt user experience. This scenario demands of quickly adjusting
clients to other nearby servers with available capacity. However,
state-of-the-art solutions do not work well. On one hand, native
routing-based scheduling is not flexible and precise enough, which
may cause cascading damage and interrupt ongoing sessions.
On the other hand, centralized algorithm is vulnerable and
not responsive due to high complexity. We propose a practical
distributed hybrid load management model to solve load burst
problem. First, the hybrid mechanism leverages flexible DNS-
based redirection, which can schedule at per-request granularity
without interrupting ongoing sessions. Second, the distributed
model is responsive by reducing computation overhead and
theoretically guarantees to converge to the optimal solution.
Based on the model, we further propose an cooperative and two
heuristic distributed algorithms. At last, using a measurement
dataset, we demonstrate their effectiveness and scalability, and
illustrate how to adapt them to different scenarios.

Index Terms—anycast, content delivery network, scheduling,
load management

I. INTRODUCTION

Content delivery networks (CDNs) have been being widely
employed nowadays for better performance by mapping clients
to their nearby service nodes. Client mapping mechanism basi-
cally includes traditional DNS-based one and recently emerg-
ing anycast routing-based one. In anycast CDNSs, service nodes
in different regions announce the same IP prefixes through
BGP, the de-facto inter-domain routing protocol. Clients will
be mapped to the closest node in terms of routing metrics, e.g.,
economic cost. Anycast-based way do not need infrastructure
to measure performance metric for scheduling, it can avoid
the well-known inaccurate client localization problem in DNS-
based way [1-3] and has shorter fail-over time.

However, there exist some native drawbacks in anycast
CDNs that simply schedule clients based on routing metrics.
This is beacuse routing-based scheduling is not aware of path
latency or server load [4-7], it cannot react timely if load burst
occurs. In other words, load burst remains the main challenge
for anycast CDNs. Generally, the scenarios of load burst
roughly fall into three categories: 1) Load fluctuation because
of normal periodicity. It happens frequently and can be solved
by proper capacity provision. 2) Load surge caused by network
attacks, e.g., DDoS, which is malicious and extremely heavy
that needs to be blocked immediately. Anycast mechanism

itself can inherently prevent distributed traffic from aggre-
gating, e.g., AS112 Project. 3) Sudden increase of loads in
some regions, e.g., when important news occur. This scenario
happens frequently with a bit higher loads, which is not cost-
effective to handle by provision. Clients need to be quickly
adjusted to other nearby servers with available capacity
timely and flexibly.

Traditional load management methods are not specifically
designed for anycast service [8—10]. In terms of implemen-
tation mechanism, some traffic engineering works [11, 12]
investigate routing-based scheduling as fine-grained routing
technology advances. For example, by employing intelligent
controller, traffic congestion on hot links could be avoided.
However, it is not sophisticated enough since ongoing TCP
sessions will be interrupted and cascading overload could hap-
pen on other healthy nodes [13]. In terms of formalized model,
previous work [14] designs a centralized scheduling model
for anycast CDNs to minimize network cost such as client-
server distance, as well as the number of interrupted TCP
sessions. However, centralized scheduling model has several
drawbacks. First, there exists the single point failure problem.
Second, computation complexity on the central controller is
very high. When load suddenly increases, re-scheduling may
not be timely enough.

To mitigate the problem of load burst in anycast CDNs,
we first formulate scheduling as an optimization problem to
minimize network cost under the constraints of server capacity.
We then propose a distributed hybrid scheduling architecture.
Specifically, the logical central scheduler is equivalently re-
placed by a set of distributed sub-controllers, i.e., authoritative
DNS (ADNS) colocated with each ayncasted service node,
which also share common anycast prefixes. They can naturally
monitor local load in each node since all service starts with
DNS. They can also execute scheduling policy at per-request
granularity without interrupting ongoing TCP sessions.

We further design a sophisticated distributed algorithm
which can converge to the optimal solution with few communi-
cation between sub-controllers. Specifically, we first decouple
the global problem to equivalent distributed local problems
at each sub-controller, thereby avoiding problems caused by
centralized management. Based on theoretical analysis, we
put forward a cooperative distributed algorithm ACCO. The
global optimal mapping is realized by each sub-controller
cooperatively optimizing its local client mapping problem. To



further improve scalability and timeliness, we propose two
non-communication heuristic algorithms Dprob and Drand.
Using a large-scale measurement dataset, we demonstrate
the effectiveness and scalability of the proposed load man-
agement model. Basically, as service nodes increase, the
convergence time of ACCO grows much slower than the
centralized method, which shows good scalability. Besides,
all three algorithms can achieve satisfying proximity. On one
hand, we test how well clients are mapped to nearby available
nodes against different extent of load burst. Results show
all three algorithms work well. The average ranks of client
mappings are close to 1-3 and gradually converge to 1 as the
burst extent decrease. On the other hand, heuristic algorithms
can achieve better scalability and responsiveness by sacrificing
accuracy. Particularly, computation time of Drand and Dprob
almost does not change with the increase of service nodes
and burst load, which performs better than cooperative ACCO,
since they are loosely coupled. However, they may map a few
clients to non-optimal nodes and result in a few service nodes
overloaded while ACCO does not. The administrators could
choose proper algorithm tools for specific scenario require-
ments by trading off between accuracy and responsiveness.
Our main contributions can be summarized as follows:

o We formulate the optimization problem of global load
scheduling and further propose a distributed load-aware
model, which overcomes the drawbacks of the centralized
management model and theoretically converges to the
same optimal solution.

o We design a practical hybrid load management mecha-
nism by leveraging a set of distributed ADNS as sub-
controllers. It enables flexible scheduling at per-request
granularity without interrupting ongoing sessions.

o Based on the distributed model, we propose three
scheduling algorithms, namely ACCO, Dprob and Drand,
to satisfy different demands of scheduling effectiveness
and timeliness. Experiment results show that compared
with the centralized method, distributed algorithms has
better scalability. Moreover, the three algorithms have
different benefits in terms of accuracy and timeliness.

This paper is organized as follows. Load management

problem and constraints are formulated in Section II. Section
IIT presents the architecture of hybrid scheduling mechanism
the distributed scheduling model. We propose three scheduling
algorithms in Section IV and evaluate their scalability and
performance in Section V. Finally, we summarize related
works in Section VI and conclude the work in Section VII.

II. LOAD MANAGEMENT PROBLEM FOR ANYCAST CDNSs

In this section, we formulate the basic problem of load burst
in anycast CDNs. Note that we use the terms “load schedul-
ing/management” and “client mapping” interchangeably. We
summarize key notations in Table I.

Basically, user experience is crucially important for CDNs.
Load scheduling for CDNs should minimize network cost such
as global client-server proximity and make the best use of
inherent proximity provided by anycast. Meanwhile, scheduler

TABLE I
KEY NOTATIONS USED IN THE PAPER

Notation  Description

Node Set of service nodes (colocated with control nodes, |[Node| = N).
R Set of client regions (|R| = M).

R(™) Client regions scheduled by control node n (R(”) C R).
T; Capacity of service node i.

T Requests originated from region j.

Ti,j Proportion of requests from region j allocated to node <.
B; Total requests handled by service node 4.

P Proportion of requests handled by service node <.

Ai Penalty factor for node 7 when overloading.

g Constraint coefficient for region j.

should also reasonably map client requests to service node
with available capacity, i.e., the rate of requests should note
exceed node capacity threshold. As stated in Section I, load
burst in regions cannot be solved by pre-provision and require
quick re-scheduling by directing newly arrived requests to
other nearby available nodes. If overload happens, insufficient
resources may cause long service queues and slow response.

Assume that there are totally N service nodes in an anycast
CDN, consisting of set Node (|[Node| = N). The available
capacity (number of requests) of each service node ¢ is T3,
hereafter noted as threshold. All clients are divided into M
client regions, consisting of the set R (|R| = M). The
total requests generated per unit time in each region j is
r;. Without loss of generality and expressiveness, network
cost regarding node ¢ serving client region j is referred as
funcation cost(4, j). There exists many ways to express cost.
For example, when bandwidth and energy consumption cost
is optimized to minimize operation costs, the cost function
can be a complex nonlinear function with regard to the traffic
volume[15]. cost(%, j) for proximity is generally proportional
to the traffic volume and distance d; ; between service node 4
and client region j, i.e., cost(i,j) = a-r;-d; ; (o is a constant).
In practice, there are many methods that can measure and
estimate the complete network cost matrix [16—18]. Although
helpful to improve the accuracy of our model, they are beyond
the concern of this study.

Briefly, load management problem of load burst in anycast
CDNes is to re-schedule quickly to minimize the network cost
while meeting the available capacity of each service node. The
global problem Q¥ can be ]\fforrjrvljulated as follows:

minimaize Z Z cost (i,7) ;. ;
i=1 j=1
M
s.t. erxm <T;, Viée Node (1)
j=1

N
Z‘ri7j = 1, V] €ER
=1

where z; ; € [0,1] represents the proportion of requests from
region j mapped to service node :. The first constraint means
that all service nodes are not overloaded and the second
means that all client requests will be served. Assuminjg that
the total requests from all regions is B (B = ZLI i),
the total fraction of requests handled by each service node



Mo )
i can be represented as P; = % For brevity, the first
constraint can be transformed into the following form:

Be P, <T;, Vie Node 2)

It usually needs to make a trade-off between the require-
ments of proximity and server capacity. For example, in order
to keep the load of a service node below threshold, we need
to schedule some clients to nodes with longer distance.

III. LOAD-AWARE ANYCAST CDN ARCHITECTURE

In this section, we propose a distributed hybrid load-aware
architecture to solve the load management problem formalized
in Section II. Next we illustrate the implementation and
theoretical scheduling model in detail.

A. Hybrid scheduling architecture for Anycast CDNs

We first introduce the implementation architecture of load
management for anycast CDNs. Generally, Anycast CDNs
choose to interconnect with a single large upstream network
providers [4, 19] with worldwide coverage at many physical
points of presence (PoPs). e.g., Cloudflare (AS13335) and the
telecom operator Cogent (AS174) interconnect at about 40
PoPs. Then all service nodes connect to the closest PoPs and
announce the same IP prefixes from the same Anonymous
System (AS) through Border Gateway Protocol (BGP). Con-
sequently, all nodes share the same prefixes and client requests
from different edge eyeball networks will be inherently routed
to their nearest service nodes in terms of routing metrics.

Fig. 1 briefly illustrates the architecture of a basic load-
aware anycast CDN d with three widely distributed nodes.
To achieve precise load scheduling control of anycast CDNSs,
a global scheduler need to 1) monitor global system status,
2) compute optimal client-server mapping in a reasonable time
and 3) carry out the scheduling plan. We now discuss the
implementation details of the three functions.

First, there are two candidate mechanism to execute the
scheduling plan: routing-based and DNS-based. Since client
mapping of anycast CDNs is natively based on routing, the
former mechanism is realized by sending control signals to
each node to change their route announcement,thereby realiz-
ing load re-mapping [4, 20]. For instance, for the root DNS
server, network administrators achieve load balance by using
no-export attribute or AS Path Prepending method. Precise
control of inter-domain routing is very difficult [10] and
routing-based scheduling may cause cascading damage [13].
The latter one is a hybrid mechanism by using an ADNS
as the scheduler to redirect requests. Specifically, when the
available service capacity is sufficient, requests are directed to
the nearest node by default anycast routing. When loads burst,
the central scheduler replies DNS request with the unique
unicast address of a specific service node, so that subsequent
content request can be routed to the designated service node
rather than the one chose by anycast routing. As shown in Fig.
1, clients in Region2 will be directed to the service node 75 by
anycast under normal circumstances. When 75 is overloaded,
the central scheduler ADNS will return the unicast address of

T3 based on global load state, and subsequent content requests
will be scheduled to T3. It enables flexible scheduling at per-
request granularity without interrupting ongoing sessions.

Second, the scheduler needs to monitor two aspects of status
timely, i.e., the remaining available capacity of each nodes and
the amount of requests from each regions. The former status
can be sent to the scheduler through routing session or separate
channels[14]. The latter can be obtained through ADNS, i.e.,
DNS request rate reflects approximate content request rate.

Last but not least, computing client mapping efficiently
is our main focus. Theoretically, a central scheduler with a
complete view of the overall system state can compute the
optimal re-mapping matrix X that satisfies performance and
capacity requirements. However, it is not practical to take
a centralized manner. First, there exists single point failure
problem. Besides, it is not scalable since the computational
complexity is too high to get re-mapping timely when load
suddenly increases. To overcome these limitations, a dis-
tributed load management model is needed, where the logical
global scheduler is equivalently replaced by several distributed
sub-controllers.

In fact, DNS itself is a distributed system, i.e., there is a
module of ADNS colocated with each service node in the
data center [21, 22]. They share the same anycast prefixes so
that associated DNS requests and content requests from the
same client will be directed to the same node. All regions
are partitioned and associated with a service node based on
anycast routing. This implementation makes the ADNS in each
data center a good sub-controller, since it can locally perceive
the remaining available capacity of the colocated service node
and the corresponding requests number. It can also control the
client mapping of its associated regions by returning anycast
address or unicast address. The distributed load management
architecture for anycast CDNs is shown in Fig. 1(c). The
number of sub-controller is also N and we also use n to index
sub-controller due to their colocation.

Next, we formally show how to distributedly solve the load
burst problem formalized in Section II.

B. Distributed Load Management Model

The global optimization problem Q9 in (1) can be solved
by Lagrangian method. We first slack the inequality constraint

in (1) into the following form:
(BeP)> —T2<0, Vie Node 3)

After that, the Lagrangian dual of Q(9) can be expressed as:

miny mazry L(X,\p)= QY

+ Z Ai ((B o P)? — Ti2) + Z“j (i Tij — 1)

i€Node JER i=1
“)

where \; and p; are dual coefficients of constraints. \; can
also been explained as the penalty cost when the service node
1 are overloaded. X represents the mapping matrix, which is
the variable to be solved and optimized.



(a) before scheduling

(b) after scheduling

(c) the distributed architecture

Fig. 1. A basic load management architecture for anycast CDNs (a)(b) and a distributed one (c)

Suppose we have N’ sub-controllers. The global optimiza-
tion goal Q) can be transformed as the sum of all sub-
controllers’ local optimization Q") as follows:

N
QW — Z QS): Z Z Z cost (i,7)xi;  (3)

n' €N’ n'€N’ i=1 jeR(n')

For the global optimization, we need to search the optimal
solution in the global solution space (i.e., mappings between
all client regions in R and all service nodes in Node). Instead,
in this distributed model, each sub-controller n is only respon-
sible for clients, noted as R(™) (R("/) C R). The expectation
of the size of R™) is M/N' (ie, E(R™)) = M/N’).
Therefore, the complexity of solving the local optimization
problems on each sub-controller is greatly reduced.

The form of the local optimization problem for each sub-
controller is consist with the global optimization problem. For
a given sub-controller n/, it can be expressed as follows:

N
minimaize g E cost (i,7) ;. ;

=1 jeR(n’)
Sj Z Z T4, S T;,VZ € Node (6)
n’€N’ je R(n')
N
in’j = ]., V_] c R(n)
i=1

Although the optimization goal is decoupled for each sub-
controller, the constraints are not, because each sub-controller
still need global status, e.g., available capacity of all ser-
vice nodes, to decide its local client mappings. Meanwhile,
each service node receives requests scheduled by all sub-
controllers. Therefore, sub-controllers need to communicate
for synchronization to ensure the optimization can converge
to the globally optimal one.

We next show how to decompose the problem for synchro-
nization communication. We still use Lagrangian method as
shown in (7):

minxmaxy L' (Xp, N\ pin) = Qﬁf?+ Z A (BL2 — Ti2)

i€ Node

N
DD DBETEEY IO
jeR(n/) i=1

where B; represents the total load of service node ¢ and can
be expressed as follows:

B; = Z Z T, ;

n’eN’ jeR(n/)

= Z rjmi,j + Z Z TinJ' = Bn’i + B—n’i

jeRr(™) yEN'\{n'} jeR®
3

where B,,; represents the load contributed by sub-controller
n/ itself to service node 7, and B_,,/; represents the total load
scheduled by other N — 1 sub-controllers except n' itself.

Each sub-controller only need to solve its own local opti-
mization problem. For the sub-controller »’, the first part of the
optimization equation (7) (.e., fo,) ) is only related to itself,
while the second part (i.e., Y, noge Ni(BF — T;?)) is related
to the penalty coefficients \; (¢ € Node) for all service nodes
and the amount of requests contributed by the other N’ — 1
sub-controllers to every service node.

To solve its local problem under the hybrid architecture,
sub-controller n needs two aspects of states. States obtained
locally includes the cost matrix ({cost(s,j)|Vi,j € Node})
and the amount of the received requests ({r;|; € R(™}).
Remote states obtained by communication includes )\; and
B_,; (1 € Node).

IV. DISTRIBUTED SCHEDULING ALGORITHM

Based on the above theoretical model, We first design a
cooperative distributed algorithm, which converge to the same
optimal solution as the central optimization problem. After
that, we further propose two heuristic algorithms, which can
reduce commutation by sacrificing a little accuracy.

A. Cooperative Distributed Algorithm (ACCO)

According to the previous theoretical analysis, we propose
a cooperative distributed load management algorithm, namely
ACCO (AnyCast COoperative). Briefly, the algorithm contains
iterative rounds and will stop when the iterative difference is
less than the minimum tolerance p in two successive rounds.
In each round, every sub-controller execute three steps: collect
the latest remote status as analyzed in Section III-B, optimize
its local client mapping, update related status after re-mapping.
Algorithm 1 describes the iterative solution process of the
entire system, which includes detailed execution process of
each sub-controller.



At initialization, \; and X,, can be randomized or clients
are mapped to the nearest nodes. sub-controllers are updated in
turn (line 5) and needs the latest state through communication
before solving local optimization problems. In terms of B_,,;,
the latest version of B,; of the precedent (n — 1) nodes is
updated in the current round while that of the rest nodes
is updated in the last round (line 6). In terms of constraint
coefficients ), it can only obtain the last round version (line
7) since they are updated only at the end of each iteration (/ine
13). Next, we theoretically prove that ACCO can converge to
the optimal solution.

Algorithm 1 ACCO
Input: Node,R, R™ {r;|j € R}{T;|i € Node}
Output: Mapping matrix X

1: A and X set random

2: k=1 (k represents the number of iterations)

3. while ‘B(_k) ~B* V|5 (Vi€ Node) do
4:  for each sub-controller n do
5: get the latest status B_,; (Vi € Node) of other
nodes: {B%’:), . B(: 1)1,3((1];1)1, . B(kfl)}
6: get the latest status & (Vi € Node) of other nodes:
(k—1) (k—1) ‘(k—1)
{\ ,>\2 s ey A }
7: solve in and get X( Svand u(k)
8: compute {B |Vi € Node, B =2 jerm rjscgf?}
and update
9: if n = N then
10 for each service node 7 do
11: compute Bg ) = =) neNode B(k)
12: compute A = max{0, )\Z(-k_l) +
o((o17) -17))
13: end for
14: end if
15:  end for
16: k=k+1

17: end while

Theorem 1. The distributed load management algorithm
ACCO described in Algorithm 1 will converge to the optimal
solution of the global optimization problem Q'9) if the fol-
lowing two conditions are satisfied: (1) Each sub-controller
iteratively solves the local optimization problem QWU ; (2) The
constraint coefficients X for all service nodes are updated after
all sub-controllers finish the update of the mapping matrix X
in the current round.

Proof: Combined with (4) and (5), the global optimization
problem can be expressed as follows:

Z Q(l)

mingmaxy L (X, )\ p)

neNode
N
+ Z i ((B *TiZ)JrZﬂj (ZL;l)
i€Node JER i=1

©))

To effectively solve the problem, we adopt the dual form of
the original problem (i.e., maxymin, L(X,\, u)). We omit
the update of p for brevity because it does not affect the proof.

First, given a fixed set {)\;|i € Node}, we need to minimize
L(X, A, ). When sub-controllers iteratively optimizes local
problems, i.e., satisfying Condition (1) of Theorem 1, the
overall process is the classical Guass-Seidel algorithm [23]
and the local solution is equivalent to Guass-Seidel algorithm:

-) (10)

where X,, represents client mappings of sub-controller n.

According to Proposition3.9, Ch.3[23], Guass-Seidel algo-
rithm is convergent if F' : R® — R is a continuous and
differentiable convex function on set X and it is also convex
on any X; when other sub-vectors are fixed, the solution
Xslk) obtained by iterations will eventually converge. In our
scenario, the objective function L (X, A, i) is continuous and
differentiable, and also a convex function on X (its Hessian
matrix can be proved semi-definitive). Besides, solving the
local problem ng) is equivalent to minimizing the global
problem Q9) against variable X; when other variables are
fixed. Third, the function is quadratic so that the optimal
solution for each local problem can be uniquely obtained.
Therefore, all conditions in the proposition [23] are satisfied,
and the solution for each sub-controller (i.e., X* (n € Node))
will be convergent and uniquely obtained. Note that p is also
updated when solving the local problem in each sub-controller.

At the end of a round, based on the dual form, we need to
solve the following problem:

fN)

x®

k+1
X( ) X, e

n—1 >

XD = grgmin QU(- -

L(X, A\ p)
s.j. A>0

maximize = minx

Y

Because f()) is continuous and differentiable, we can solve
the problem (11) by gradient descent, which is implemented
in line 13 of Algorithm 1 (the condition (2) of Theorem 1).

With regards to global optimization problem, the solution
of the dual form is consistent with that of the primary form.
Because each local problem Qg) has an unique solution,
the distributed algorithm ACCO will converge to the optimal
solution of the global optimization problem Q9.

Communication complexity for each node: sub-controller
can adopt two ways to collect the state information: (1)
Directly request state variables from other sub-controllers that
generate the state. For instance, sub-controller n requires the
amount of requests scheduled by other NV — 1 sub-controllers
to all service nodes, which needs N — 1 communications.
(2) Set up a central state storage CStore, where columns are
servers and rows are sub-controllers, as shown in Fig. 1(c).
When sub-controllers need to update (its own row) or fetch
(other rows) information, they only communicate with CStore,
thereby reducing communication cost to O(1).

B. Non-communication Distributed Algorithm

We start with the ideally steady case where all service nodes
have sufficient capacity, i.e., capacity constraints does not



exist. Basically, for clients in R™M) | the service node colocated
with the sub-controller n is the closest node chosen by anycast
and the sub-controller should direct them to the colocated
service node. Therefore, there is no need to communicate
to obtain the remaining capacity of other service nodes and
amount of requests contributed by other sub-controller.

In practice, CDN providers usually try to obtain the actual
load B; of each service node under normal scenario by pre-
estimation or trial operation, and accordingly provision the
capacity of each node, such as 10% higher than the actual load.
Therefore, the above non-communication scheduling method
is feasible if no load burst happens. However, the load man-
agement needs to handle unconventional scenarios of frequent
load burst, cooperation is needed to ensure no overload. By
trading off between the two cases, the constraints of the
sub-controllers in ACCO can degenerate to only consider
the available capacity of local service nodes. In other word,
in most normal cases sub-controllers will greedily direct its
catchment to the colocated service node by returning anycast
addresses. When load burst happens, some unicast address will
be returned to direct clients to other nodes. It can eliminate
the communication cost and achieve better scalability by
computing client mapping in parallel.

Based on the above rationale, we further propose two
heuristic methods that can be executed by all sub-controllers
simultaneously without communication. When the amount of
requests in R(™ exceeds the available capacity of the local
service node, the strategies of the two algorithms to schedule
the overloaded requests are described as follows:

e Drand: Randomly schedule the overloaded requests to
one of the other NV — 1 nodes.

e Dprob: Schedule the overloaded requests to one of the
other N —1 nodes with a certain probability. The schedul-
ing principle is that the closer the service node is to the
client, the more likely it is to be selected. Specifically,
assuming the geographical distance between the client
region j and the service node 7 is d;_;, the priority of node
i serving region j is prio; ; = # and the probability to

prio; ;

priog, ;"

be selected is p; j = 5

i€ Node

V. EVALUATION

In this section, we compare and evaluate the ACCO, Drand,
and Dprob algorithms, and mainly focus on the trade-off
between the scheduling effectiveness (i.e., proximity) and
responsiveness (i.e., convergence time). We first describe
the experiment settings and dataset. We then compare the
scheduling scalability between ACCO and the centralized
algorithm. Finally, we evaluate the effectiveness of algorithms
under different extent of burst.

A. Experiment Settings

We first describe parameter initialization. We use the geo-
graphic location of clients and service nodes from a real mea-
surement data. Specifically, we use a measurement platform
[24] with O(1 M) probes, i.e., clients, to measure anycast CDN
Cloudflare with 96 nodes. The normal client mapping relations

a40,ACCO
—rir— 40, Central
50,ACCO

M =" 50,Central
60,ACCO T
~_ == 60,Central

i
e~

10 12 149 16
Iteration

Fig. 2. The iterative convergence process of ACCO and Central for different
numbers of service nodes

i8 20

can also be measured as described in [19]. In our measurement,
all clients are distributed in 186 time zones, 146 countries.
With regard to service nodes, we select top-k popular nodes
from the 96 ones in different experiment. Node popularity rank
is computed by sorting the number of associated routable client
prefixes. Specifically, we set a medium scale (35-60 service
nodes) similar to Microsoft and Level 3 [7] when evaluating
scalability in Section V-B. When we evaluate the scheduling
effectiveness in Section V-C, it is fixed to 50 since CDN scale
is not the main variable.

Besides, it is necessary to have an estimate for the amount
of requests r; in each client region. We assume that it follows
Poisson distribution with a mean of 5Gbps [15]. The cost
function cost(i,j) in this problem is set to the product of
geographical distance rank and the proportion of requests from
region j.

In addition, we still need to set the capacity threshold of
each service node T7;. Setting T; equally across all nodes is not
reasonable since the demand from each region is not balanced,
which will lead to under or over utilization. As described in
[20], anycast CDN providers usually take trial operation to get
a proper estimation of request load on each service node and
the proportion from each region. Therefore, we calculate T;
as C'x P;, where C is provisioned total system capacity and
P; is the request load proportion of each node under normal
circumstances, i.e., all clients are mapped to the service nodes
with the lowest network cost (¢.e., the highest rank). Note that
the total system capacity C' should be just sufficient to serve
all demands and cost-effective, similar as in general traffic
engineering problems [14, 20]. We use capacity coefficient to
adjust system capacity for evaluation, noted as p = C/R,
where R =}, 7; and is the total requests.

B. Scalability

In this part, we compare the distributed algorithm ACCO
with the centralized algorithm. For the centralized algorithm
(noted as Central hereafter), the implementation is to solve
the global problem immediately after obtaining all state infor-
mation. For ACCO, the implementation follows Algorithm 1,
i.e., each sub-controller is strictly synchronous and executes
serially during the iterations. In this experiment, the capacity
coefficient p is set to 1.1 and the available capacity for each
service node is set accordingly. We assume that the amount of
requests from radomly selected 10% client regions increases
by 15% suddenly.
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Fig. 3. The convergence time against the increase of service nodes

Fig. 2 shows the iterative convergence process of ACCO
and Central for different numbers of service nodes. X-axis
represents the number of iterations and Y-axis represents
the optimization goal. We observe that both algorithms will
converge after a certain number of iterations, and the goal
values at convergence are close to 1. This is because most of
the requests (except the overloaded ones) are still directed to
the optimal node (i.e., distance rank is 1), since the overload
problem in the experiment settings is not serious. Therefore,
we can conclude that ACCO and Central will eventually
converge to the optimal value, which verifies the correctness
of Theorem 1 by experiment. Besides, for the same number
of service nodes, ACCO converges faster than Central.

Sub-controllers in ACCO solve the local problems in a se-
quential and circular manner, whose parallelism can be further
improved by sacrificing a little accuracy. Specifically, sub-
controllers do not need strict synchronization and performs
iterations independently. When one round ends, regardless of
whether the state information for all nodes is the latest, a
new round of iteration directly performs. The asynchronous
distributed algorithm is called ACCO-async. Given that the
division of client regions usually does not change while
the CDN scale may expand, we compare the convergence
time against the increase of the service nodes for the three
algorithms Central, ACCO and ACCO-async in Fig. 3.

We can see that Central has the worst scalability. The
convergence time increases dramatically as the CDN scale
expands. For ACCO, although the sub-controllers need to
solve the local problems serially, the running time grows
approximately linear with the number of nodes. This is be-
cause the solution space for local problems is greatly reduced.
The scalability of ACCO-async outperforms the other two
algorithms due to the sufficient parallelism across nodes.
However, it is easy to overload other service nodes, which
needs to be used according to the actual situation.

C. Effectiveness against the Extent of Load Burst

We next evaluate all the algorithms under different extent
of load burst. We assume that the requests from a certain
proportion () of client regions increases sharply. o follows
uniform distribution with the mean & and the corresponding
number of client regions are randomly selected. 5 means the
increased proportion of the load in each selected client region
and takes three different values, i.e., 0.15, 0.2, and 0.25.

Fig. 4 shows the final average rank of service nodes for
all client regions under the circumstances of load burst (@ =
0.15 for the upper plots and & = 0.2 for the lower plots). X-
axis represents the capacity coefficient p. Obviously, with the
increase of o or (3, the overall optimization capability for all

three algorithms is reduced, and clients are mapped to lower
ranked nodes. In terms of proximity, ACCO can schedule the
requests to higher ranked service nodes compared with Dprob
and Drand, which is because ACCO strictly solves the global
problem and get the optimal solution. Because Dprob also
assigns a higher weight to the closer node, we can observe
that Dprob works better than Drand. Due to the proximity of
clients in anycast CDNs, the gap between them is not large.

Note that Drand and Dprob do not consider the global
state (only local state) and some other service nodes may be
overloaded. Fig. 5 shows the average number of overloaded
nodes and deviation when & = 0.15. We can find that
with the increase of (3, the average number of overloaded
nodes increases, but the total number is relatively small.
Furthermore, in our measurement, a large number of clients are
located densely in Europe. The sudden increased requests for
these clients may be scheduled to other service nodes whose
capacity is limited, leading to the overload. It means that we
may overestimate the number of the overloaded nodes in the
experiment settings. As a result, the two heuristic algorithms
are applicable in practice.

Besides, Drand and Dprob are fairly loosely coupled so that
the running time almost does not change with the number
of service nodes and the amount of the load, while ACCO
needs longer convergence time as described in Section V-B.
The advantage of ACCO is that the overload problem can
be eliminated when the total system capacity is sufficient
although the scalability is not as good as the two completely
distributed algorithms. Network administrators can flexibly
adopt these three tools based on the scenario requirements.

VI. RELATED WORK

Previous works about anycast mainly focus on two aspects.
One is to identify anycast nodes using various advanced
methods [25-28]. The other one is to evaluate the performance
of anycast services, such as client proximity [4-7, 29], stabil-
ity [4, 7], deployment scheme [5, 6], reliability [30] and load
management [4, 11, 20].

In this paper, we mainly focus on the problem of the load
burst management in anycast CDNs. There exist many tradi-
tional load management models [8—10]. Nevertheless, few of
them are designed for anycast CDNs, and it is difficult to make
them compatible with the anycast mechanism. Some works
achieve the request scheduling by the routing configuration
[4, 11, 12, 20, 31]. For example, Hashim et al. propose “active
anycast” to integrate the network latency and congestion
state into routers for scheduling [11]. Merwe et al. design
an intelligent routing control mechanism (exchanging BGP
MED (Multi-Exit Discriminators) with appropriate peering
AS) to avoid congested links [12]. However, the routing-
based scheduling method is not flexible enough and may cause
session interruption.

Alzoubi et al propose a centralized anycast CDN load
management model to minimize the network cost as well as
the number of interrupted TCP sessions [14]. Unfortunately,
The computational overhead of the centralized algorithm is



3.92

3.92

3.92

—A— Drand —a— Drand S —a— Drand
2.94 e Dprob zoar —e— Dprob 2.94 B, —e— Dprob
1.96 —=—Acco 196} o 4 —, —=— Acco 1.96 ——g——e—a ., —=— Acco
0.08] FF=—a—t oogl T — g, 0.98
s &
3.92 3.92 3.92
~—4~— Drand —4— Drand
2.94 e Dprob 2.94 :\: - e Dprob 2.94
196f , —=—Acco 1.96 .\_\:\.\A\ —=—Acco 1.96
oss| A== . 0.98 B §‘—-—- 0.98
1.05 1.10 115 120 1.25 1.05 1.10 115 1.20 1.25 1.05 1.10 1.15 1.20 1.25
4 p [
(@ =015 (b) 8=0.2 (c) B=0.25
Fig. 4. The average client mapping rank for different values of /3 (increased proportion of requests). Upper plots: & = 0.15; Lower plots: & = 0.2
6 6 6
sl *  Dprob|] sl * Dprob|] 5| & * Dprobl]]
=  Drand =  Drand % =  Drand
at g a4t g a4t g
2 % ] 2 %
g 3t 1220 4, 1 B3 :
= Ll z 1 = Ll % i i 1 =, % 1
[ |
1l £ . 1l % . 1l S -
o T ol ; ; e ol. . . . -
1.05 1.10 1.15 1.20 1.25 1.05 1.10 1.15 1.20 1.25 1.05 1.10 1.15 1.20 1.25
P P P
(a) p=0.15 (b)y 6=0.2 (c) B=0.25

Fig. 5. The average number of overloaded nodes and deviation when applying Dprob and Drand. (& = 0.15 for the three plots)

expensive and the central scheduler is easy to be an attack
target. To fill the gaps, in this paper, we propose a distributed
hybrid scheduling model, which overcomes the drawbacks of
the routing-based scheduling mechanism and the centralized
scheduling model.

VII. CONCLUSION

In this paper, we propose a distributed hybrid scheduling
model for anycast CDNs to alleviate load burst. On implemen-
tation, the hybrid scheduling mechanism overcomes drawbacks
of the traditional routing-based scheduling mechanism. On the
other hand, the distributed scheduling model decouples the
global load management problem and improves the scalability,
which can theoretically guarantee to converge to the global
optimal solution. The characteristics of anycast CDNs provide
the basis for the implementation of the model. Based on
the model, we further propose three distributed scheduling
algorithms. The experiments demonstrate that they can meet
the different demands of the scheduling effectiveness and
timeliness. We believe that our work is a meaningful step
towards exploring the load-aware anycast CDN architecture.
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